

CHEMISTRY A-Level

Summer Work 2023

Welcome to A-level Chemistry! We hope you will enjoy the challenges offered by this fascinating subject and come to find it a rewarding and worthwhile experience. We follow the OCR-B (Salters) course, which is both academically rigorous and always set in a real-life context so that you can see how the theory is relevant.

The A-Level chemistry course is very demanding and some thorough preparation work is vital. Throughout the course it will be very important that you plan your time effectively to meet deadlines and continue to develop your independent working skills. We therefore want you to attempt three tasks before starting the A-Level chemistry course. These tasks will help you review some important concepts from GCSE that will be encountered again during the first term of A-Level chemistry and help you assess what you have understood. We hope that Task C will introduce an important and recurring theme which will be significant throughout the A-Level course.

You should complete **all** the tasks **A-C**:

- A: Multiple choice questions on basic concepts
- **B:** Balancing chemical equations
- C: The "Scale of chemistry"

You will need to bring the completed summer work with you for checking on the Year 1 induction day in **September** and it will be used in subsequent lessons. We estimate that the work should take about 5-7 hours to complete.

Feel free to contact us using the email address below if you need any guidance in completing this work, or any additional information about preparing for the A-Level chemistry course. There is a copy of the periodic table on the next page to help you complete this work, but you might also like investigating the extremely interesting and interactive version of the periodic table accessible via this link: **http://www.ptable.com**

The chemistry team would like to wish you a great summer holiday and we very much look forward to meeting you in September!

Simon Colebrooke	Course Team Leader Chemistry	scolebrooke@longroad.ac.uk
Zoë Thorn	Chemistry Teacher	

The Periodic Table of the Elements

(0) 18 (0)	helum 4.0	10	Pe Ne	20.2	18	Ar	argon 39.9	36	ŗ	krypton 83.8	54	Ae	xenon 131.3	86	Ł	radon			
6	17	6	L	19.0	17	Cl	chiorine 35.5	35	'n	Dromine 79.9	53	Ι	lodine 126.9	85	At	astatine			
(9)	16	8	0	oxygen 16.0	16	s	sultur 32.1	34	Se	79.0	52	Te	tellurtum 127.6	84	Po	polonium	116	۲	Ivermorium
(5)	15	2	z	14.0	15	٩.	a1.0	33	As	74.9	51	sb	antimony 121.8	83	B	209.0			
(4)	14	9	ပ	carbon 12.0	14	Si	silicon 28.1	32	9 0	germanium 72.6	50	Sn	tin 118.7	82	å	lead 207.2	114	F١	flerovlum
(3)	13	5	•	10.8	13	٩l	aluminium 27.0	31	G	gallum 69.7	49	Ľ	Indium 114.8	81	11	thaillum 204.4			
							12	30	'n	zinc 65.4	48	8	cadmlum 112.4	80	ВН	mercury 200.6	112	ວ	copernicium
							7	29	5	copper 63.5	47	Ag	allver 107.9	62	Au	gold 197.0	111	Rg	roentgenium
							10	28	z	nickel 58.7	46	Р	106.4	78	ħ	platinum 195.1	110	õ	darmstadtlum
							6	27	ပိ	cobalt 58.9	45	Ł	modum 102.9	22	Ŀ	192.2	109	M	meltnerlum
							ø	26	Ъ.	1ran 55.8	44	Ru	ruthenium 101.1	92	ő	osmium 190.2	108	£	hasslum
							7	25	Ч	manganese 54.9	43	۲	technetlum	22	Re	menium 186.2	107	Вh	muhrlad
Der	mass						9	24	ັວ	chromium 52.0	42	٩	molybdenum 95.9	74	3	tungsten 183.8	106	Sg	seaborgium
Key omic numt Svmbol	ve atomic						5	23	>	50.9	41	q	niobium 92.9	73	Тa	tantalum 180.9	105	g	mnundub
atc	relativ						4	22	F	47.9	40	ų	21.2 91.2	72	Ŧ	178.5	104	Ł	rutherfordium
							ы	21	Sc	45.0	39	≻	yttrium 88.9		• 57-71	lanthanoids	007.00	89-103	actinolds
(2)	2	4	å	9.0	12	ВМ	magnesium 24.3	20	ca	calclum 40.1	38	s	strontlum 87.6	56	Ba	barlum 137.3	88	Ra	radium
€ - - 3	hydrogen 1.0	3		6.9	11	Na	23.0	19	¥	39.1	37	ď	Rabelum 85.5	55	ទ	caestum 132.9	87	ድ	francium

-	F
71 Lu utetum 175.0	103 Lr Iawrendu
70 Yb ytterbium 173.0	102 No nobellum
69 Tm thuilum 168.9	101 Md mendelevium
68 Er erblum 167.3	100 Fm fermium
67 Ho ^{holmlum} 164.9	99 Es einsteinium
66 Dy _{dysprostum} 162.5	98 Cf
65 Tb terbium 158.9	97 BK ^{berkelum}
64 Gd gaddinium 157.2	96 CM curtum
63 Eu europium 152.0	95 Am
62 Sm samarlum 150.4	94 Pu plutonlum
61 Pm prometinum 144.9	93 Np neptunium
60 Nd neosymium 144.2	92 U 238.1
59 Pr praseodymium 140.9	91 Pa protactinium
58 Ce ^{oerlum} 140.1	90 thortum 232.0
57 La 1anthanum 138.9	89 AC actinium

Task A: Multiple Choice

Name:	
-------	--

For each question there are four possible answers; **A**, **B**, **C** or **D**. For each question, circle the answer which you think is correct. You can find a copy of the periodic table at the following website:

http://www.ptable.com

Atoms, ions and sub-atomic particles

Table 1 shows the sub-atomic particles in different atoms and ions. The table includes an "unknown" atom / ion in the bottom row.

Table 1					
Particle	Proton number	Mass Number	Number of protons	Number of neutrons	Number of electrons
Mg	12	24	12	W	12
Mg ²⁺	X	24	12	12	10
CI	17	35	17	Y	17
Cl-	17	35	17	Z	18
Unknown	8	16	8	8	10

1. Which particles in Table 1 are ions?

Α	Mg²⁺ and Cl⁻ only	В	Mg and Mg ²⁺ only
с	Cl⁻ only	D	Unknown, Mg ²⁺ and Cl ⁻ only

2. Select a row A-D from the options below that shows the correct values of W, X, Y and Z that could be used to complete Table1 above:

	Value of W	Value of X	Value of Y	Value of Z
A	11	10	18	18
В	12	14	17	18
С	12	12	18	18
D	12	12	18	17

3. The diagram below shows the electron arrangement in an atom of magnesium:

Which of these diagrams correctly shows the electron arrangement in the ion formed by magnesium **and** gives the correct charge on the ion?

Chemical Formulae

4. Look at the list of substances below;

Ρ	N ₂	Q	$C_6H_{12}O_6$	R	Ar
S	C ₈ H ₁₈	т	NH_3		

Which statement is true?

- A P and R are the only elements
- **B** All the substances are composed of molecules
- **C** Substance **T** is made from 4 elements
- D Q contains more atoms than S

5. The "Relative Formula Mass" allows chemists to compare the mass of different substances, e.g. the RFM of H_2O is 18 and the RFM of CO_2 is 44.

What is the Relative Formula Mass of Cu₂O?

Α	95.5	В	143
С	66	D	45

6. What is the Relative Formula Mass of (NH₄)₂SO₄?

Α	118	В	146
С	132	D	46

7. The picture shows molecules in liquid water. If the water is heated it will eventually boil and turn into a gas (steam). Which of the statements below are true about the formation of steam?

- W When the steam is formed some of the covalent bonds between H and O atoms are broken
- **X** The steam contains hydrogen and oxygen gas
- Y Forces between water molecules are broken but not the covalent bonds
- **Z** Steam is made of H₂O molecules

Select A-D to show the true statements:

Α	Y and Z are true	В	All statements are true

- CW and X are trueDOnly Y is true
- 8. The diagram below shows the structure of the amino acid alanine and four statements, P-S.

- P Alanine is made from 4 different elements
- **Q** Alanine is made from 13 different elements
- **R** Each alanine molecule has 4 atoms
- **S** Each alanine molecule has 13 atoms

Which statements are true?

Α	P, R and S	В	P and S
С	R only	D	Q only

9. Compounds **W-Z** are ionic and made from the ions listed below. The list shows the formula of the ions and their charges. Which formulae **W-Z** are correct?

Potass	sium	K⁺				Nitrat	e (V)	NO_3^-		
Alumin	ium	Al ³⁺				Hydro	oxide	OH-		
Oxide		O ²⁻				Amm	onium	NH_4^+		
Magne	sium	Mg ²⁺								
w	AIOH₃		x	NH₄OH		Y	KO ₂		z	Mg(NO ₃) ₂
	Α	X and	W		В	X and	Υ			
	С	Y and	Z		D	X and	ΙZ			

Mathematics for Chemistry

10. An important equation in chemistry links the energy E of a photon of radiation to the frequency, f:

E = hf

In this equation **E** is the photon energy, **f** is the frequency and **h** is a number called "Planck's constant" and has a value of 6.63 x 10^{-34} .

If a photon has energy of 1.31 x 10⁻¹⁹ J, what is the frequency (do not worry about units)?

Α	1.98 x 10 ⁻¹⁶	В	8.69 x 10 ⁻⁵³
С	0.198	D	1.98 x 10 ¹⁴

11. Which of the following numbers are shown to three significant figures?

F	0.1204	G	1.24	Н	0.124		
I	0.12	J	1.240	к	1.24 X 10 ³	L	0.00124
A	G and I		В	G, H	and J		
С	G, H, K and L		D	All e	xcept F		

12. The most common unit for measuring volumes in chemistry is the "decimetre-cubed", given the symbol dm^3 . One dm^3 is commonly referred to as a litre and 1 dm^3 = 1000 cm³. If a chemist measures out 25.0cm³ of hydrochloric acid, what is this volume in dm^3 ?

Α	0.025 dm ³	В	25,000 dm ³

 $\label{eq:constraint} {f C} \qquad 40 \ dm^3 \qquad {\begin{tabular}{c} {\bf D} & 0.25 \ dm^3 \\ \end{array}}$

The next two questions refer to the ideal gas equation, PV = nRT.

In this equation: P = pressure of the gas

V = volume of the gas

n = number of moles of gas (ie how many gas particles there are)

R = a constant called the "gas constant"

T = the temperature of the gas

13. A student needs to rearrange the ideal gas equation in order to calculate a value for **n**. Which is the correct rearrangement?

A
$$n = PVRT$$

B $n = \frac{RT}{PV}$
C $n = \frac{PV}{RT}$
D $n = RTPV$

14. A chemist has a sample of an ideal gas at 25 $^{\circ}$ C. Without changing the temperature, the student increases the volume of the container the gas is stored in. Choose which graph best shows the effect of increasing the **volume**, **V**, on the **pressure**, **P**, of the gas:

TASK B: Balancing chemical equations

Balance the following equations by adding the correct number **in-front** of each chemical formula. You can assume that all the formulae are correct already. Some equations may already be balanced.

Now practice turning the information below into balanced equations:

11. One molecule of chlorine (Cl_2) reacts with one molecule of bromine (Br_2) to form bromine chloride (BrCl). Write a balanced equation for the reaction.

12. Two molecules of hydrogen sulphide (H_2S) react with one molecule of sulphur dioxide (SO_2) to form sulphur (usually just given the symbol S in equations) and water.

Finally, convert the diagrams shown below into balanced equations. Simplify the equations as much as possible:

13. The reaction of hydrogen with oxygen (write your equation beneath the boxes).

Balanced equation:

14. The decomposition of nitric (III) acid (write your equation beneath the boxes).

Balanced equation:

15. Hydrogen and bromine react together to form hydrogen bromide as shown by the balanced equation:

H₂ + Br₂ → 2HBr

Use this balanced equation to complete the diagram below, showing the reaction:

TASK C: The "scale of chemistry"

Understanding the relative sizes of things in chemistry, both compared to one another and to other objects encountered in everyday life is one of the big challenges associated with studying A-level chemistry. This task is intended to help you develop an understanding of that scale.

1. Do some research to find the size of each of the objects listed below. You will no doubt find the information recorded in a range of difference distance units, but that does not matter, simply note the value you find. Record the source of the information. For some objects you may be able to estimate the size yourself and if so, simply write "estimate" in the source column.

Object	Size	Unit	Size in metres	Source
Palisade leaf cell				
SARS-Cov-2 Virus (virus				
causing Covid-19)				
Human hair width				
Nits (egg of the head louse)				
Gold atom				
Grain of salt				
e-coli bacteria				
Nucleus of a gold atom				
Dust mite				
Drop of water				
Human skin cell nucleus				
Red blood cell				
Diameter of proton				
Diamond in a piece of jewellery				
Haemoglobin molecule				
Snowflake				

2. Convert all of your findings into metres, so that they can be more readily compared. You might find the following relationships useful:

Millimetre mm = 1 x 10^{-3} m Micrometre μ m = 1 x 10^{-6} m Nanometre nm = 1 x 10^{-9} m Angstrom Å = 1 x 10^{-10} m Picometre pm = 1 x 10^{-12} m Femtometre fm = 1 x 10^{-15} m Attometre am = 1 x 10^{-18} m

3. Produce a PowerPoint (or equivalent alternative) that summarises your findings. Your PowerPoint should:

- > Include an image of each object
- Include a table with the information from Q1 and Q2
- > Separately to the table, list the objects in order of increasing size
- > Show the size of each object in metres
- You should also include a slide showing the objects grouped according to whether they are macroscopic / microscopic / sub-microscopic**
- A slide which shows some interesting comparisons between one object and another, or one object and something everyday (for example – how many gold atoms could be laid end to end along a 1p coin).

** Macroscopic means that the object can be seen unaided with the naked eye. Microscopic means the object is too small to see with the naked eye, but can be seen using a microscope. For our purposes, we will assume that by "microscope" we mean a standard light microscope that can resolve objects as small as approximately 1×10^{-6} m in length. Sub-microscopic means objects that could not be seen using a normal light microscope, smaller than 1×10^{-6} m. This distinction is a bit approximate as light microscopes vary somewhat!

You will need to bring a printed copy of your PowerPoint to your first chemistry lesson to help with discussions (colour printing is not essential and you can put more than one slide on a page if necessary). We will give instructions for submitting the electronic version of your PowerPoint once college has started.